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ABSTRACT

Making intelligent decisions on the basis of the video cap-
tured by a large network of surveillance cameras requires the
ability to identify overlap between their fields of view. With-
out this information it is impossible to perform even simple
analysis, such as distinguishing between repeated behaviours
and multiple views of the same behaviour. Large-scale in-
telligent video surveillance thus requires a means of under-
standing the relationships between the fields of view of the
cameras involved. The exclusion approach is the only method
currently capable of performing online estimation of camera
overlap for networks of more than 50 cameras, with a ver-
sion of the algorithm applicable to 1000 camera networks
having been published. Empirical evaluation of every such
algorithm is critical to assessing its performance, and essen-
tial if comparisons between methods are to be made. This
paper presents a method by which such an empirical evalua-
tion may be carried out, and makes publicly available the data
(including ground truth) on which it based in order that com-
peting methods might be compared equally. Precision vs re-
call curves are reported for a series of experiments comparing
the results of exclusion to ground truth. These results demon-
strate the strengths and limitations of the exclusion-based esti-
mation process, but show that the performance of the method
exceeds the requirements of surveillance applications.

1. INTRODUCTION

Video surveillance networks serve a number of purposes in-
cluding public safety, crime deterrence and perimeter secu-
rity. The hardware and networking infrastructure required to
support these networks is becoming increasingly widespread,
leading to a proliferation of networked surveillance devices
that constantly capture and store video data. The question
then arises: what can one do with all this data? For a small
network of, say, less than 10 cameras, it is possible (but ex-
pensive) to employ human operators to monitor the data as
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it is captured, or search through archives for a specific event.
An alternative is to use software to monitor incoming footage
automatically, or to index and search video archives. Recently
developed computer vision algorithms show some promise in
this area, but are typically only applicable to small scale net-
works, and require validation (see [1] for a survey).

Installations of 50,000 camera surveillance networks are
now being reported, and networks of more than 100 cameras
are common place. Human operators struggle to concentrate
on even a single video feed for any length of time, and even
with sufficient manpower the problem of coordinating obser-
vations that span multiple cameras cannot be overcome man-
ually. Computer vision algorithms require some idea of the
arrangement of the cameras, either spatially or in terms of
observed activity, in order to reason about events that span
multiple cameras. Acquiring this information automatically
typically involves accumulating evidence for links between
camera pairs over time—a task that grows exponentially as
cameras are added to a network.

The spatial and temporal relationships between the fields of
view of a set of cameras can be described in terms of their ac-
tivity topology [2]. An accurate estimate of activity topology
has a number of uses in video surveillance. The most im-
portant of which is as a generic tool facilitating multi-camera
algorithms through the prediction of the movement of targets
through and between camera fields of view, and as a means of
partitioning surveillance computations for scalable distributed
processing.

The suitability of the exclusion-based approach [2,3] to the
estimation of activity topology of networks of over 1000 cam-
eras has been shown [4,5]. However a quantitative analysis of
the accuracy of the method has not previously been provided,
due to the difficulty of obtaining ground truth against which
to measure and the lack of comparable methods.

The main contribution of this paper is that it reports quanti-
tative evaluation of the accuracy of exclusion; based on mea-
surements obtained from real video footage. Previous work
has focused on validation of exclusion, by inspection and us-
ing simulated inputs, and on the performance properties of the
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approach, most particularly scalability. A second major con-
tribution is that we explore how to approach empirical evalua-
tion of activity topology estimators in relation to ground truth
topology, overcoming a number of significant challenges in-
volved in undertaking such experimentation. Finally, to facil-
itate a more standardised approach to topology estimator eval-
uation, we are making part of our data set (including ground
truth) freely available on the Internet.1

2. MOTIVATION – ACTIVITY TOPOLOGY

An estimate of the activity topology associated with a camera
network makes feasible a number of processes critical within
on-line video surveillance. Nodes within the activity topol-
ogy graph represent the fields of view of individual cameras,
or alternatively regions within those fields of view. Each such
region is labelled a cell and denoted cx. The edges of the
graph represent the connections between cells. These con-
nections may be used to represent the overlap of the cells or,
by including time offsets, the movement of targets through
the graph. We are interested here only in assessing the abil-
ity of the exclusion algorithm to estimate the overlap in the
fields of view of the cameras, and use the links in the graph to
represent this information.

2.1. Formulation of Activity Topology

In order to focus on the special case (camera overlap) of inter-
est in this paper, the definition of the activity topology graph
is further elaborated as follows:

1. Edges are directed, such that (ci,c j) represents the flow
from ci to c j whereas (c j,ci) represents the (distinct)
flow from c j to ci. Directed edges can be converted to
undirected edges if required, but the exclusion algorithm
estimates each direction independently and thus we re-
tain this information.

2. Each edge has a set of labels, p[a,b]
i, j for various time delay

intervals [a,b], each giving the probability that activity
leaving ci arrives at c j after a delay between a and b.
In this paper, each edge has exactly one such label, that
for [−ε,ε] where ε is some small value large enough
to account for time differences between cameras. Thus
p[−ε,ε]

i, j describes overlap between cameras.

Actual activity topologies are constrained by building layout,
camera placement and other factors. Typical topologies con-
tain sub-graphs with many edges between the nodes within
the same sub-graph and few edges between nodes within dif-
ferent sub-graphs. These nearly isolated cliques are termed
zones within the activity topology. Figure 1 shows a recov-
ered activity topology for a network of over a hundred cam-
eras, with zones represented by circles.

1Data available at http://www.acvt.com.au/research/surveillance/

Fig. 1. Estimated activity topology for a real camera net-
work. Edges linking cameras are shown as coloured lines,
while zones are pictured as circles. Groups of size one have
been omitted.

2.2. Applications of Activity Topology

An accurate estimate of activity topology has a number of ap-
plications within surveillance. The most important are cam-
era handover and activity partitioning:

• Camera handover – for functions such as inter-camera
tracking, when a target leaves a given camera it is nec-
essary to continue the tracking in another camera. In the
absence of any extra information, all other cameras must
be searched to re-aquire the target. Activity topology as-
sists in pruning this search space: only those cameras
adjacent to the camera the target left (or even the cell it
left from) within the topology need be searched. Further,
when topology edges are labelled with likelihood, these
likelihood estimates can be used to prioritise the order
in which adjacent cameras should be searched. Finally,
if topology edges are labelled with time-related proper-
ties, these may be used to determine when it is most pro-
pitious to start searching within each adjacent camera.
Tracking is the most important use of this information,
but it can be used in other contexts as well, and thus ac-
tivity topology supports a generic “next cell” predictive
function.

• Activity partitioning – activity topology provides a ba-
sis for partitioning distributed surveillance processing
such that communication between partitions (which may
be expensive) is minimal and the vast majority of com-
munication is within partitions (which is inexpensive).
This partitioning scheme enables an efficient divide-and-
conquer approach to many surveillance functions.



2.3. Ground truth for activity topology

Without a quantitative analysis of the accuracy of activity
topology estimation, it is impossible to gauge or predict the
accuracy of the many surveillance functions that may be built
on top of it. We therefore see this analysis as a process that
must be undertaken to create reliable, well understood large
scale surveillance software.

At the time of writing, the ground truth data that is required
for such analysis is scarce. The PETS [6] workshop has a tra-
dition of providing a standard data set for attendees to test
their algorithms; however this is limited to data from a very
small number of cameras, often only one. Existing large cam-
era networks are not set up for evaluation, instead being laid
out according to security demands. The sheer volume of data
required is also an obstacle, both in terms of the raw number
of bytes of video but also the amount of activity that must be
observed to realistically obtain an estimate of topology. Addi-
tionally, privacy concerns prevent the use of data from many
surveillance networks in public places.

3. PRIOR WORK ON ESTIMATING ACTIVITY
TOPOLOGY

A number of existing surveillance systems rely on human op-
erators to input the activity topology. Practical experience in-
dicates this is unreliable: people generally have a poor ability
to discern activity topology from a given camera configura-
tion. This is in part due to the difficulty of recording the
broad spatial relationships between cameras with the accu-
racy required, but also because such relationships only partly
determine activity topology, as they do not account for au-
tonomy in the behaviour of people and other objects under
surveillance.

Previously, activity topology has been learnt by tracking
people as they appear and disappear from camera fields of
view (FOVs) over a long period of time. For example, in [7]
the delay between the disappearance of each person from one
camera and their appearance in another is stored to form a set
of histograms describing the transit time between each cam-
era pair. The system is demonstrated on a network of 3 cam-
eras, but does not scale easily as it requires that correspon-
dences between tracks are given during the training phase
when topology is learnt.

Dick et al. [8] suggest an alternative approach whereby ac-
tivity topology is represented by a Markov model. This does
not require correspondences, but does need to learn a dense
N×N transition matrix during the training phase and so does
not scale well with the number of cameras N, due to the num-
ber of observations required for the Markov model.

The training phase required in this previous work is prob-
lematic in large networks, chiefly because the camera config-
uration, and thus activity topology, changes with surprising
frequency; as cameras are added, removed, moved and fail.

Approaches requiring a training phase to complete before op-
eration would have to cease operation each time there is a
change, and only resume once re-training has completed. This
is an intolerable restriction on the availability of a surveillance
network.

Hence, on-line automatic approaches, where topology is
estimated concurrently with the operation of surveillance, are
desirable. Ellis et al. [9] do not require correspondences or
a training phase, instead observing motion over a long period
of time and accumulating appearance/disappearance informa-
tion in a histogram. Instead of recording known correspon-
dences, it records every possible disappearance that could be
related to an appearance. Over time, actual transitions are
reinforced and can be extracted from the histogram with a
threshold. A variation on this approach is presented in [10],
and has been extended by Stauffer [11] and Tieu et al. [12]
to include a more rigorous definition of a transition based on
statistical significance, and by Gilbert et al. [13] to incorpo-
rate a coarse to fine topology estimation. These methods rely
on correctly analysing enough data to distinguish true corre-
spondences, and have only been demonstrated on networks of
less than 10 cameras.

4. ESTIMATING ACTIVITY TOPOLOGY BY
EXCLUSION

Consider the problem of determining overlap for a set of N
cameras. The set of cameras generates N images at time t,
with each image partitioned into a grid of cells. Application
of foreground detection [14] to all camera images produces
a set of foreground blobs, each of which can be summarised
into a position given by a single cell within the containing
camera. At any given time t, each cell is labelled occupied or
unoccupied depending on whether it contains a summarised
foreground object.

Exclusion is based on the observation that a cell which is
occupied at time t cannot be an image of the same area as any
other cell that is simultaneously unoccupied. Given that cells
tend to be unoccupied more often than they are occupied, this
observation can be used to eliminate a large number of cell
pairs as potentially viewing the same area at each time instant.
The process of elimination can be repeated for each frame of
video to rapidly reduce the number of pairs of image cells that
could possibly overlap. This is the opposite of most previ-
ous approaches: rather than accumulate positive information
about overlap between cells, we seek negative information al-
lowing the instant elimination of impossible overlaps. Such
overlaps are referred to as having been excluded [2].

In this paper, we only evaluate the application of exclu-
sion to detecting overlap. Note however, that the technique
is not limited to this special case of activity topology, but can
also be applied to the general case (connections between non-
overlapping cameras) through the use of varying time offsets
in the operands to the exclusion operation. Future papers will



evaluate this scenario.

4.1. Exclusion over multiple timesteps

Rather than calculate exclusion separately at each timestep,
it is more efficent to gather occupancy information over mul-
tiple frames and then calculate exclusion over all of them at
once.

Let the set of cells over all cameras be C = {c1 . . .ck}.
Corresponding to each cell ci is an occupancy vector oi =
(oi1, . . . ,oiT )′ with oit set to 1 if cell ci is occupied at time t,
and 0 if not. If two cells are images of exactly the same region
in the world, we would expect their corresponding occupancy
vectors to match exactly. This can be tested by applying the
exclusive-or operator⊕ to elements of the occupancy vectors,

oi⊕o j =
T

max
t=1

oit ⊕o jt . (1)

It can be inferred that two cells ci and c j do not overlap if
oi⊕o j = 1. This comparison is very fast to compute, even for
long vectors.

4.2. Tolerance for sources of error

Exclusion as described so far assumes that:

1. corresponding cells in overlapping cameras cover ex-
actly the same visible area in the scene,

2. all cameras are synchronised, so they capture frames at
exactly the same time,

3. the foreground detection module never produces false
positives or false negatives, and

4. the ground truth does not change over time.

In reality none of these assumptions is likely to hold com-
pletely. It is thus possible that two overlapping cells might
simultaneously register as occupied and vacant and therefore
that the exclusive-or of the corresponding occupancy vectors
might incorrectly indicate that they do not overlap.

Assumption 1 can be relaxed by including the neighbours
of a particular cell when registering its occupancy. We use
a padded occupancy vector pi which has element pit set to 1
when cell ci or any of its eight–connected neighbours are oc-
cupied at time t. A more robust mechanism for determining
whether two cells ci and c j overlap is thus to calculate oi	p j
on the basis of the occupancy vector oi and the padded occu-
pancy vector p j. The 	 operator is a uni-directional version
of the exclusive–or defined such that

oi	o j =
T

max
t=1

oit 	o jt , (2)

where oit 	 o jt is 1 if and only if oit is 1 and o jt is 0. Note
that this exclusion calculation is no longer symmetric. Also,
padded occupancy is properly defined only for cells with

neighbours on all sides, with the effect that camera resolu-
tion (in terms of numbers of cells) is reduced by two in each
dimension.

The spatial padding approach just described will tend to
overcome the effects of clock skew (assumption 2), pro-
vided that skew is also minimised through keeping camera
clocks closely synchronised (via NTP). In addition, temporal
padding is used, whereby pi has element pit set to 1 when cell
ci or any of its neighbours is occupied at any time in the range
t± ε .

To account for detection errors (assumption 3), we cal-
culate exclusion based on accumulated results over multiple
tests, rather than relying on a single contradictory observa-
tion. Assuming that the detector has a constant failure rate,
the evidence for exclusion is directly related to the number of
contradictory observations in a fixed time period t = 1 · · ·T ,
which we call the exclusion count:

Ei j =
T

∑
t=1

oit 	 p jt . (3)

Finally it is possible for the ground truth to change over
time (violating assumption 4). The experiments we describe
in this paper have constant ground truth to prevent this being
a source of error. Note, however, that we hypothesise that
exclusion is well suited to providing estimation of changing
overlap, and future work will explore this hypothesis.

4.3. Normalised exclusion

The exclusion count has two main shortcomings as a measure
for deciding cell overlap/non-overlap:

• As the operator a	 b will only return true when a is
true, the exclusion count Ei j between cells ci and c j is
bounded by the number of detections in ci, and is likely
to be higher for cells ci that register more detections.

• In a large network, it will frequently occur that data sent
from a camera will be lost, or not arrive in time to be in-
cluded in the exclusion calculation, or that a camera will
go offline. Thus the maximum value of Ei j also depends
on how often data from c j is available.

To address these problems we define a padded availability
vector v for each cell that is set to 1 when occupancy data for
the cell and its neighbours is available, and 0 otherwise. We
can then define an exclusion opportunity count,

Oi j =
T

∑
t=1

oit ∧ v jt , (4)

between each pair of cells. Based on this we define an overlap
certainty measure from each cell with opportunity count at
least 1 to every other cell

Ci j =
Oi j−Ei j

Oi j
. (5)



This measures the number of times that an exclusion was not
found between ci and c j as a proportion of the number of
times an exclusion could possibly have been found given the
available data.

4.4. Deriving overlap from exclusion

Intuitively, overlap is symmetric: if ci overlaps with c j, then
c j overlaps with ci. This is utilised to strengthen estimation
of overlap from exclusion certainty. Overlap of ci and c j is
estimated by the following Boolean function,

Xi j = Ci j > C∗∧C ji > C∗ , (6)

with C∗ a threshold value.

5. EVALUATION APPROACH

We aim to evaluate the accuracy of exclusion in estimating
camera overlap. Our approach is to measure error in the esti-
mates produced by exclusion when compared with the ground
truth overlap, including both false positives (overlap in the es-
timate but not in ground truth) and false negatives (overlap in
ground truth but not in the estimate).

Accuracy is evaluated in terms of precision-recall [15]
curves, which account for both false positive and false neg-
ative errors. In this approach, the relationship between esti-
mation (the overlap results produced by exclusion) and reality
(the ground truth overlap) is expressed in terms of a confusion
matrix .

ground truth
overlap no overlap

estimated overlap T P FP
no estimate NEP NEN

estimated no overlap FN T N

Table 1. Confusion Matrix

where T P (true positives) is the number of cell pairs correctly
estimated to overlap, FP (false positives) is the number of
cell pairs incorrectly estimated to overlap, NEP (no estimate
positives) is the number of overlapping cell pairs for which
there is insufficient data to produce an estimate, NEN, (no es-
timate negative) is the number of non-overlapping cell pairs
for which there is insufficient data to produce an estimate, FN
(false negatives) is the number of cell pairs incorrectly esti-
mated not to overlap and T N (true negatives) is the number of
cell pairs correctly estimated not to overlap. We define

Recall =
T P

T P+FN
, (7)

and
Precision =

T P
T P+FP

. (8)

Notice we remove the cases where there is insufficient occu-
pancy data for the exclusion based estimator to draw a con-
clusion. In the experiments described in this paper, we use a
fixed cut-off, and any cell pairs (ci,c j) for which

Oi j < O∗ or O ji < O∗ (9)

holds are placed into the NEP and NEN categories. We
choose a fixed low sample-size cut-off, O∗ = 20, in order to
avoid interference with the varying threshold, C∗, evaluated
in precision–recall curves. This is a pragmatic choice made
in the experimental design; our other work on exclusion uses
a log based penalty term.

Now, Recall measures the fraction of ground truth overlap-
ping cell pairs that are correctly identified by the estimator,
whereas Precision measures the cell pairs correctly identi-
fied as overlapping by the estimator as a fraction of all cell
pairs identified as overlapping by the estimator. A thresh-
old, C∗, is used by the estimator to determine whether a cell
pair is considered to overlap. Raising C∗ converts false posi-
tives into true negatives, hence increasing Precision but also
converts true positives into false negatives, reducing Recall.
The precision–recall curve captures the effect of varying the
threshold.

6. EXPERIMENTS AND RESULTS

In all experiments, each camera’s field of view is divided into
a 12 by 9 grid of cells with edge cells omitted; there are thus
70 cells per camera. The number of cells per field of view can
be adjusted to suit the application, but it has been determined
empirically that 12 by 9 is a sufficient to accurately repre-
sent the relationships required. The selection thus partly re-
flects the density of the ground truth correspondences. Cam-
eras operate at a frame rate of either 10 FPS or 30 FPS and
at 640x480 resolution. The time padding, ε , is set to 0.15
seconds to account for the differing camera frame rates. As
mentioned previously, the low sample-size cut-off O∗ is set to
20. The precision-recall curves reported for each experiment
show the effect of varying the value of C∗ between 0 and 1,
in steps of 0.05. Finally, the minimum blob size threshold for
identifying foreground objects is set to 200 pixels.

6.1. Measuring and matching ground truth

The ground truth data presented in this paper was captured
by five cameras, each mounted on a tripod and looking to-
wards the floor. The views were chosen to provide a signifi-
cant level of overlap between pairs of cameras. Markers were
placed on the floor at each corner of each view, colour coded
to allow easy inspection. The locations of these markers were
also measured within the view of each camera, to provide a
mapping between the camera’s image co–ordinates and floor
co–ordinates.



Fig. 2. Ground truth overlap for five cameras as used in sev-
eral of our experiments. Only every third grid line is shown.

Surveillance cameras often use small, cheap lenses which
exhibit a significant radial distortion. Therefore, each camera
was examined and the degree of radial distortion measured
and used to correct the images. The mapping between the
image and floor co-ordinates can then be used to align the im-
ages, shown in Figure 2, allowing the overlap of each camera
cell to be computed. For clarity, the figure shows cells at 3
by 4 resolution instead of 12 by 9, so each cell in the figure
represents a 3 by 3 grid of cells.

The topology computed in this way has some limitations.
Any degree of overlap between floor regions is considered
valid and forms a link in the graph. In accepting such small
levels of overlap, it is assumed that the accuracy of the floor
mapping is very high, however in practice it is difficult to
know exactly how accurate is is – the alignment is based on
image data with finite resolution, which has been transformed
in a non-linear way onto the floor.

The topology algorithm itself is immune to the effects of
radial distortion and other imaging issues, since it operates on
observations only, and does not use or need any geometric in-
formation. Overly stringent matching to the ground truth can
thus produce pessimistic results, which are not indicative of
the true accuracy of the method. For this reason, two methods
for comparing against the ground truth will be presented. The
first is a simple difference between the two graphs, the second
will allow a one cell difference in either the source or desti-
nation cell to be considered a match. These matching rules
are related: the former has a tolerance of zero cells, and the
latter a tolerance of one. The true accuracy of the method is
between these two points. Note that any link which has an er-
ror greater than the tolerance will still be reported, regardless
of any correct neighbouring links.
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Fig. 3. Precision-recall curves for model cars driving data

Fig. 4. Erroneous links remaining with C∗ = 0.95

6.2. Planar cells and activity

In this experiment, occupancy data is generated by activity
(two remote controlled cars) moving on the floor, for thirty
minutes. As these objects are effectively on the ground plane,
any sensitivity to the minimum visible extent calculation is
eliminated. The aim of this experiment is to evaluate the ac-
curacy of exclusion under ideal conditions.

Precision-recall results for this experiment are shown in
Figure 3. The two curves are for a ground truth matching
tolerance of zero and one cells respectively. Figure 4 shows
an illustrative subset of false positive overlaps with C∗ = 0.95
and the use of zero cell tolerance matching. These are off by
one cell from the ground truth and hence counted true posi-
tives by the one cell tolerance rule. This effect explains why
Precision approaches 1 with the one cell tolerance.



Fig. 5. Introducing an occlusion into the scene

Consider the use of the estimated topology in tracking (i.e.
for camera handover). Starting from a given current cell, the
set of cells to be searched to continue tracking is termed the
candidate set. It is critical that the candidate set includes the
actual next cell, in order to avoid lost tracks, thus the minimal
candidate set implied by a given ground truth overlap (there
might be several overlaps for a given starting cell) includes
the overlapping cell and its immediate neighbours, to tolerate
movement between frames. Now, consider the one cell tol-
erance results (with Recall = 1,Precision = 1), which imply
that a candidate set including the cell estimated to overlap, its
neighbours, and the neighbours of those neighbours includes
the actual next cell. Thus the size of the candidate set de-
rived from this technique is at most 25 cells per ground truth
overlap, which provides an entirely acceptable search space.

6.3. Planar cells, planar activity, occlusion

This experiment differs from 6.2 only by the introduction of
an occlusion into the scene, namely a bookshelf that is suffi-
ciently tall that no camera can see over the top of it. There
are no other changes from 6.2, but of course the occlusion
will perturb the ground truth. The aim of this experiment is to
evaluate the accuracy of exclusion with a more realistic scene
than in 6.2. This test was performed on less video data then
the others, so the low sample-size cut-off O∗ was reduced to
8 to take this into account. The results presented for this ex-
periment are the links which have been are missing from the
estimated topology, shown in Figure 6. As expected, the miss-
ing links are those which cross the book-shelf; all others are
present.

6.4. Planar cells, non-planar activity

This experiment has the same camera configuration as 6.2,
the only difference is that the activity generating occupancy
data is the movement of three dimensional objects (people)

Fig. 6. Links which are missed when an occlusion is intro-
duced into the scene.
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in the space above the ground plane. The effect is that the
minimum visible extent calculation becomes significant, and
a potential additional source of error. Note that the ground
truth for actual overlap of fields–of–view on the floor plane is
the same as in experiment 6.2. The aim for this experiment
is to evaluate the accuracy of exclusion with more realistic
activity than in 6.2.

The precision-recall curves in this case show poor accu-
racy with the zero cell tolerance matching rule, whereas the
curve for one cell tolerance is still excellent. It can be con-
cluded from these results that the estimates produced by ex-
clusion are less accurate with realistic activity, which is to be
expected. Legs are difficult to measure from closely spaced
views, since from one angle they can appear widely separated,
whilst from another they will appear to touch, leading to er-
roneous measurements.

However, consider the tracking application in relation to
the one cell tolerance results. With (Recall = 1, Precision
= 0.8), there are 1.25 = 1/0.8 estimated overlaps per true
overlap. As a result, the set of candidate cells for contin-
uing tracking from a given cell will contain an average of
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31.25 = (1.25× 25) cells for each true overlap, again an ac-
ceptable search space.

6.5. A zone within a large topology

In this experiment we execute exclusion for a moderately
large network (approximately 100 cameras) within which the
five cameras from 6.3 form an isolated sub-graph (a strong
form of zone) within the overall topology. Our aims are as
follows:

• To verify that the topology computed for the sub-graph
is unaffected by the rest of the graph.

• To measure the false overlap between cells within the
sub-graph and those outside. Note that there is no ac-
tual overlap, thus any overlap estimated by exclusion is
erroneous.

In addition we note in passing that our distributed implemen-
tation of exclusion processes the data of this experiment in
better than realtime; readers interested in such performance
aspects are referred to [4].

Results for this experiment are shown in Figure 8. The
external overlap shows the subset of false positives relating
to (false) overlap between cells within the zone and cell out-
side it (i.e. interference from outside the zone). The internal
overlap shows the total positives for overlap within the zone.
Both are plotted against C∗ threshold values. It is evident that
relatively low C∗ values (≥ 0.4) are sufficient to eliminate in-
terference completely. Such C∗ values obtain acceptable pre-
cision and recall (0.72 and 0.99 respectively).

7. CONCLUSION

This paper has presented an analysis of the accuracy of the
exclusion algorithm, based on real data. Through a series of
experiments, it has been shown that the exclusion algorithm

yields very accurate results, more than acceptable to provide a
basis for other algorithms, such as tracking or behaviour anal-
ysis across large networks of cameras. These tests have been
carried on a small test network with a simple geometry, due
to the difficulty involved in manually generating ground truth
data. Other tests show that the method scales to larger net-
works, and the combination of these two sets of tests demon-
strates both the applicability of the method to the problem
of topology estimation for large camera networks. Compar-
isons to other methods have not been presented because, as
far as we are aware, no other methods capable of estimating
the topology of large networks exist.

A carefully captured and calibrated set of ground truth data
has been presented – in summary form in this document, with
video data being available online. Such data will allow di-
rect comparison of different topology estimation algorithms,
critical for advancement of the field.

The exclusion algorithm has shown itself to be highly accu-
rate and scalable, both critical features for current and future
large surveillance camera networks.
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